Energy Efficiency Resource Standards: Economics and Policy

Tim Brennan* and Karen Palmer**

*Professor, Public Policy and Economics, UMBC; Senior Fellow, Resources for the Future, <u>brennan@umbc.edu</u>

**Senior Fellow, Resources for the Future, <u>palmer@rff.org</u>

"Advances in Electricity Planning & Policy Modeling" AEG/FERC Energy Modeling Federal Energy Regulatory Commission Washington, DC Nov. 10, 2011

Energy Efficiency Resource Standards

- State policies to achieve reductions in energy use
 - o Electricity total
 - o Electricity peak
 - o Natural gas
- What are these things?
- Why have them?
 - o Energy-related externalities
 - o Consumer error
 - Would other policies make sense?
- Can an EERS give the "right" answer?
 Moving demand for electricity use
- Implementation observations

EERS throughout the country

Renewable Power & Energy Efficiency: Energy Efficiency Resource Standards (EERS) and Goals

Federal Energy Regulatory Commission • Market Oversight • www.ferc.gov/oversight

22 States have Energy Efficiency Resource Standards (EERS) 9 have Efficiency Goals

Brennan & Palmer: EERS AEG/FI

What an EERS is <u>not</u>

- It's not a cap
 - o Not Kyoto-like target
 - Not like a cap for cap-and-trade
- It's also not a tax
 - o Motivated by cutting energy costs
 - But may be like a tax—utilities bear costs, converted into electricity rates
- Is it even a policy?
 - o Aspirational objective for other policies
 - o Are other policies substitutes or complements?
- Who's responsible? Utilities? Government? Everyone? • If target isn't met, does anyone get punished? Maybe.

Brennan & Palmer: EERS

What an EERS can be

- Subtract a target quantity from "business as usual" use
 - E.g., A state's energy use in some future year should be less than it would have been under BAU by X% of the use in some baseline year, or some nominal amount.
 - Not that use by some future year must be (100 X)% of the use in the base year.
- Base year may move over time, e.g., be a reduction based on percentage of use in prior year(s)
 Low energy use in Year T means less reduction in T+1
- Target may also be percentage below BAU in that year
- In either case, factors causing BAU use to go up will permit more energy use
 - o Again, an EERS is not a cap

How much do they matter?

- [Credit to Sam Grausz and Blair Beasley at RFF; apologies to you and them if I screw up.]
- Preliminary figures: Only four states would have use requirements as much as 10% below BAU
 - o Hawaii \cong 35%; New York, Delaware, Maryland \cong 15-16%
 - Some of these may use pre-program EE-related savings
- Of 24 states they've checked, 15 are less than 3%
- Rhetoric vs. reality?
 - o Hawaii least susceptible to relocation competition
- How to count savings if EERS not a cap?
 - Recession reductions don't count; economic growth not penalty
 - Rebound effect? "Free rider"?

Brennan & Palmer: EERS

Rationales and other policies – environment

- Harmful emissions
 - o SO₂, NOx, particulates, Hg
 - CO₂; climate change
- Different emissions profiles for different energy sources
 - Coal, then natural gas on the fossil fuel side but fracking?
 - o Nuclear
 - o Wind, solar
- EERS treats all energy sources equally
 - o Most expensive generation at margin may have lower emissions
- Discourage using electricity for dirtier energy sources
 o Plug-in cars, PHEVs, mass transit
- Why not tax, cap emissions?

Rationales and other policies – peak load

- Electricity supply must meet demand by the minute
 Absent non-prohibitive cost storage (beyond pumped hydro?)
- Critical peak transmission, generation expensive
 - Top 15% used < 1% typical
 - Prices to cover costs could be 50-100 times baseload
 - o Wholesale price limitations lead to capacity markets
- General EERS will not address; total energy small
- Real time pricing first-best; higher prices or rebates

 MD: Rebates paid from sale of demand response in capacity
 market
- 11 states have separate EERS for peak demand • Little environmental gain, but big operational saving

Brennan & Palmer: EERS

Rationales and other policies – consumer error

- Consumers apparently reluctant to invest in energy efficiency despite high savings
 - o Predates climate concern; Hausman (1979), Gately (1980)
- Possible explanations (Gillingham, Newell, Palmer)
 - Financing constraints—can people borrow? (Do elsewhere)
 - o Inadequate information (Private incentives, policy response)
 - o Landlord, resale inability to capture benefits (Other amenities?)
- Or are consumers just too dim? Behavioral economics
 EERS for their own good
- Non-paternalistic benefit-cost analysis?
 o How to do BCA when revealed preference isn't "true" WTP?

Brennan & Palmer: EERS

Rationales: Green jobs, energy security

- Energy security first
 - Not much electricity is generated from imported energy (oil)
 - Substitution away from oil (home heating, transportation) involves using more electricity, not less
- Green jobs?
 - You can't make an economy better off by raising the cost of its inputs (unless it raises costs of competitors elsewhere more)
 - o Public investment reallocates employment, doesn't increase it
 - o EERS could hurt renewable generation at the margin
- Does recession change the story?
 - With underemployment equilibrium, could be a net jobs growth
 - o But what investments are best? Mining coal? Building roads?

Brennan & Palmer: EERS

Policies directed at energy

- Define value V of energy Q, V(Q) = consumer plus producer surplus
- Marginal value $V_Q(Q)$ = difference between marginal WTP for energy and marginal cost
- Let *E*(*Q*) be the external harm
- o Emissions, usually, but fill in the blank with your favorites
- Optimal energy use Q^* where $V_Q(Q^*) = E'(Q^*)$ (assuming second-order conditions hold: they may not!)
- No policy use Q° where $V_Q(Q^{\circ}) = 0$ (assuming no other market failures)
- *Q** < *Q*°

Standard picture

Brennan & Palmer: EERS

Standard stories

- Absent uncertainty, set energy tax equal to $E'(Q^*)$
- Adopt cap-and-trade with quantity set at Q*
- Giving away permits can buy political support for policy
- With uncertainty, choose the policy that best matches harm: standard Weitzman (1974) story
 - E' close to constant => energy tax
 - E jumps at $Q^* =>$ fix harm with permits
- With prior tax distortions, may need to use tax revenues to reduce other taxes (Oates and Parry, 2000)
 - o Policy with freely allocated permits may reduce welfare
 - o Second-best argument

How does EERS fit?

- As noted earlier, it's neither a tax nor a cap
- Nevertheless, it can act like a cap if V_Q(Q) known
 Assume that E'(Q) known
- Set absolute reduction to come out equal to $Q^{\circ} Q^{*}$
- Set percentage reduction at $X^{0/0}$ so $Q^* = [1 X^{0/0}]Q^{\circ}$
- But what if economy demand for energy can change over time?
- Let θ be a parameter representing shift in total value V (Q, θ), marginal value V_Q(Q, θ)

Can an EERS work if demand changes?

• Condition for an absolute energy reduction relative to business as usual Q° to get to Q^{*} for any θ :

$$\frac{V_{Q\theta}^{\Box}}{V_{QQ}^{\Box}} = \frac{V_{Q\theta}^{*}}{V_{QQ}^{*} - E^{\prime\prime*}}$$

• Condition for an fixed percentage energy reduction relative to business as usual Q° to get to Q^{*} for any θ :

$$\frac{Q^{\Box}V_{Q\theta}^{*}}{V_{QQ}^{*} - E^{\prime\prime*}} = \frac{Q^{*}V_{Q\theta}^{\Box}}{V_{QQ}^{\Box}}$$

Brennan & Palmer: EERS

Yes, these conditions can hold

- Absolute quantity reduction EERS can hold if
 - Marginal harm from energy use is constant (E'' = 0)
 - o Marginal value (MV) curve is a straight line
 - o Changing θ shifts out the MV curve in a parallel fashion
 - V_{QQ} , $V_{Q\theta}$ the same at Q° and Q^{*}
- Fixed percentage reduction EERS can hold if
 - Marginal harm from energy use is constant (E'' = 0)
 - o Marginal value (MV) curve is a straight line
 - o Changing θ pivots the MV curve at the vertical intercept, changing proportionally the economy's demand for electricity at any tax
- Both EERS types work if E'' is infinite at Q^* and changing θ has no effect on Q°
 - Both Q° and Q^{*} are fixed

Brennan & Palmer: EERS

EERS following energy efficiency? First, set it up

- Assume MV curve V_O is a straight line
- Let $Q^\circ = 1/\theta$
 - More energy efficiency reduces the quantity of electricity that has no additional net value to economy
- Area under V_O up to $Q^\circ = 1/\theta$ is a constant K

• Energy efficiency gives the same value of energy service, achieved over a smaller quantity of electricity

- Implies vertical intercept must be $2K\theta$
 - Area under triangle is $\frac{1}{2} [2K\theta] [1/\theta] = K$
- $V_Q(Q, \theta) = 2K\theta 2K\theta^2 Q$ $\circ V_Q = 0$ when $Q = 1/\theta$

Energy efficiency effect picture

Brennan & Palmer: EERS

In this setting, EERS working = E'' < 0

- Visual intuition easier than the math
- If Q^* below the pivot point of V_Q as θ increases, Q^* falls with more energy efficiency
- With steeper MV curve, an absolute reduction from BAU Q° will lead to a higher MV at Q*
- Thus, the intersection of V_Q with E' occurs at higher marginal harm with more energy efficiency, but at a lower Q^*
- Implies E' curve is falling, E'' < 0
- Same result holds, but not as strong with equal percentage reduction below BAU Q°
- But E" could fall! Natural gas displacing coal

Brennan & Palmer: EERS

An illustration

Brennan & Palmer: EERS

A couple of implementation issues

- Use energy efficiency savings to count toward renewable requirement
 - Increased energy use at margin multiplies marginal RPS compliance cost
 - EERS: Use hypothetical rather than actual savings
 - o Also, not a cap
- Letting distribution utilities handle it
 - Changing utilities from "energy" to "energy services"?
 - Flies in face of longstanding policy to keep regulated monopolies out of competitive markets (US v. AT&T; ISOs)
 - o Discrimination, cross-subsidization risk
 - o Why? Legislatures let PSCs raise taxes to cover EE costs

Brennan & Palmer: EERS

Overall ...

- About 24 states have them
 - Not a cap, not clear if it's an independent policy
 - In only 4 states does it appear to bite
- Rationales better addressed with other policies
 - o Environment, peak load
 - o What to do about consumer mistakes?
 - o Green jobs, energy security don't appear to have much traction
- Could do this through a tax, CAT, with usual arguments
 - o Can work under special and not particularly realistic cases
 - With EE, works only if marginal external harm falls and it might
- Should utilities run the show?